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Notation:
@ G - connected, reductive algebraic group over C
@ G - its Langlands dual group
@ W - the Weyl group of G (and of G)

Can we understand the functor:
® : Rep(G) — Rep(W)

given by )
Vi Vige?



@ The affine Grassmannian and Lusztig’s embedding
NeL, = Gra,

e A kind of generalization of this embedding for other groups
(m: M —N)

© Connections to representation theory

© A derived version



e The affine Grassmannian and Lusztig’s embedding
Ner, — Grg,
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The affine Grassmannian

G - connected, reductive algebraic group over C

R=C((1) >0 =C[[]

Gr = G(R)/G(9O) — the affine Grassmannian of G



The affine Grassmannian

G - connected, reductive algebraic group over C

R=C((1) >0 =C[[]

Gr = G(R)/G(9O) — the affine Grassmannian of G
Structure:

{connected components} AL x+ (Z(G))

G(9) U Gr by left translation, and there is a bijection
{G(9D) - orbits} <=5 (X, (T))*

with 5
Grt < A\
dim Gr* = (20, ).



Example for G = GL,(C), G = GL,(C)







Example for G = GL,(C), G =




Lusztig’s embedding Ngr,, — Grgr,

“Space of lattices"

Definition

A lattice is an O-submodule of £” of rank 7.

Ly = 9" - standard lattice

As sets,
space of lattices = G(R)/G(9).
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Lusztig’s embedding Ngr,, — Grgr,

“Space of lattices"

Definition
A lattice is an O-submodule of £” of rank 7.

Ly = 9" - standard lattice

As sets,
space of lattices = G(R)/G(9).

Using explicit computations with lattices, Lusztig gave

NeL, — {lattices of valuation 0 contained in Ly}
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Lusztig’s embedding Ngr,, — Grgr,

A dominant weight (a, b) gives a lattice

NgL, — {lattices of valuation 0 contained in 'Ly}
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Example for G = GL,(C), G =
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Lusztig’s embedding Ngr,, — Grgr,

NgL, — {lattices of valuation 0 contained in t~'Lg}

M; < Gr™
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Lusztig’s embedding Ngr,, — Grgr,

NgL, — {lattices of valuation 0 contained in t~'Lg}

M; < Gr™

Dually,

N, — {lattices of valuation 0 containing Lo}

M 2 € Grim

Here, M| = M, but not true for GL3(C).
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Example for G = GL3(C)

Here, M| # M,.
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9 A kind of generalization of this embedding for other groups
(m: M —N)
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Small representations

Definition
A small representation of G has all of its weights in the root lattice
and are such that their convex hull does not contain twice a root.

Let Gr*™ be the closed subvariety of Gr that is the union of the
G(9)-orbits corresponding to small representations.
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Small representations

Definition
A small representation of G has all of its weights in the root lattice

and are such that their convex hull does not contain twice a root.

Let Gr*™ be the closed subvariety of Gr that is the union of the
G(9)-orbits corresponding to small representations.

Example

Let G = SL,(C). Then G = PGL;(C).
Dominant weights for G = 0, 1,2, . ..
Dominant weights for G=0,24,...
Gr'™ = Gr'| | Gr?
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A kind of generalization of Lusztig’s embedding to other

groups
Define O~ := C[t!'] € R and Gry := G(O ™) - 0. Define the open

subvariety
M = Gr'™ n Gry

of Gr®™, and letj : M < Gr*™ be the open inclusion.
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A kind of generalization of Lusztig’s embedding to other

groups

Define O~ := C[t!'] € R and Gry := G(O ™) - 0. Define the open
subvariety
M = Gr'™ n Gry

of Gr®™, and letj : M < Gr*™ be the open inclusion.

Theorem (Achar—-Henderson 2013)

There is a finite G-equivariant map

T M- N.

This gives a functor

U =Tyo0j : Pervg(p) (Gr'™) — Pervg(N).
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Progress on understanding ¢

Pervg (o) (Gr'™) Rep(G)

Pervg(N) Rep(W)



© Connections to representation theory
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The geometric Satake equivalence

Theorem (Lusztig 1983)

dim IH®(Gr") = dim V(})
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The geometric Satake equivalence

Theorem (Lusztig 1983)

dimIH* (Gr") = dim V())

Theorem (Mirkovi¢—Vilonen 2007)

There is an equivalence of categories

S : (Pervg(p)(Gr), ) = (Rep(G), ®)

IC(GrY) — V(X).
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Progress on understanding ¢

Q«

Pervg (o) (Gr*™) Rep(

)sm

S|
«——
—

i

Pervg(N) Rep(W)
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The Springer correspondence

Nilpotent orbits in s, Partitions of n Irred. Reps. of G,

Sizes of Jordan blocks A= (A1, ) V(N)

It would be nice to bypass the combinatorics and directly relate
representation theory to geometry.

21/28



The Springer correspondence

Nilpotent orbits in s, Partitions of n Irred. Reps. of G,

Sizes of Jordan blocks A= (A1, ) V(N)

It would be nice to bypass the combinatorics and directly relate
representation theory to geometry.

Let i : N — N be the Springer resolution, and define the Springer
sheaf
Spr := (1. Cx[dim N] € Pervg(N).

Theorem (Springer, Lusztig, Borho—MacPherson)

W acts on Spr, and there is a functor
S : Pervg(N) — Rep(W)

given by
F — Hom(Spr, F).



The Springer correspondence

@ If F is simple, then S(F) is either simple or zero.

© Thus, we have a bijection:

subset of the simples in Pervg(N) <— Irr(W)



The relationship between the two

Theorem (Achar—Henderson 2013, Achar—Henderson—Riche

2015)

The following diagram commutes:

Pervg (o) (Gr'™) S—im> Rep(G)sm

o l‘l’

Pervg(NV) Rep(W)

where ® = (—)T ®e.



© A derived version
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Extension to the mixed, derived setting

Theorem (M.)

Consider the following diagram.

~

Sm

Db,mix (Grsm der ; Dbcthx Gm (g*)
G(9) ™ [Béz.—Fink. 2008] sm

| =

b, mix derS b WX Gy (f4%
D™ (V) [Rider 2013]D Ciln (5%)

There is a natural isomorphism of functors

der® o derS*™ < derS o ¥

making the diagram commute.



A glimpse of the proof

It suffices to prove commutativity of the following diagram of
additive categories

. Sem : §
Semis o) (Gr'™) derS7, Coh$ " (§* )sm

‘| =

Semisg(N) — —— Coh//*Cn (p*)

where F € Semisg(p) (Gr*™) is of the form

F ~IC(Gr')[m] ® ... ® IC(Gr'™)[n,].
and der® = (— ®¢&) o (=)o (- ®0,x Ops)-
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A glimpse of the proof

It suffices to prove commutativity of the following diagram of
additive categories

X Ssm - o
Semisg o) (Gr™™) derS7, COthG"’ (8% )sm

| -

Semisg(N) — —— Coh//*Cn (p*)

where F € Semisg(p) (Gr*™) is of the form
F ~IC(Gr')[m] ® ... ® IC(Gr'™)[n,].
and der® = (— ®¢) o (=) o (— ®0,x Ops)-
The proof goes in two steps:
@ Prove commutativity of the diagram for all groups of semisimple
rank 1.

© Show that each functor in the diagram commutes with restriction
to a Levi subgroup of semisimple rank 1. AT



The End

Thanks!



Elaborate on Step 1

Reduces to G = PGL;,(C), G = SL,(C).

To produce a natural isomorphism, we must trace morphisms around
the diagram.
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Elaborate on Step 1

Reduces to G = PGL;,(C), G = SL,(C).

To produce a natural isomorphism, we must trace morphisms around
the diagram.
Degree 0 - Achar, Henderson, and Riche (2015)

Degree 2 - reduces to a single morphism

fi="“——c1(Laer)”.
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Elaborate on Step 1

Reduces to G = PGL;,(C), G = SL,(C).

To produce a natural isomorphism, we must trace morphisms around
the diagram.
Degree 0 - Achar, Henderson, and Riche (2015)

Degree 2 - reduces to a single morphism

fi="“——c1(Laer)”.

[Yun—Zhu 2011], [Lusztig 1995] [Yun—Zhu 2011]
get us part of the way there
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