Derived geometric Satake equivalence, Springer correspondence, and small representations

Jacob P. Matherne

Louisiana State University/University of Massachusetts Amherst

ICRA XVII

August 15, 2016

Motivation

Notation:

- ${\it O \hspace{-.1in} G} \ \ G \ \ \ connected, \ reductive \ algebraic \ group \ over \ \mathbb{C}$
- **2** \check{G} its Langlands dual group
- W the Weyl group of G (and of \check{G})

Can we understand the functor:

$$\Phi: \operatorname{Rep}(\check{G}) \to \operatorname{Rep}(W)$$

given by

 $V \mapsto V^{\check{T}} \otimes \varepsilon?$

- The affine Grassmannian and Lusztig's embedding $\mathcal{N}_{\mathbf{GL}_n} \hookrightarrow \operatorname{Gr}_{\mathbf{GL}_n}$
- A kind of generalization of this embedding for other groups $(\pi : \mathcal{M} \to \mathcal{N})$
- Connections to representation theory

The affine Grassmannian and Lusztig's embedding $\mathcal{N}_{\mathbf{GL}_n} \hookrightarrow \operatorname{Gr}_{\mathbf{GL}_n}$

2 A kind of generalization of this embedding for other groups $(\pi : \mathcal{M} \to \mathcal{N})$

- 3 Connections to representation theory
- A derived version

The affine Grassmannian

G - connected, reductive algebraic group over \mathbb{C} $\mathfrak{K} = \mathbb{C}((t)) \supset \mathfrak{O} = \mathbb{C}[[t]]$

 $\operatorname{Gr} = G(\mathfrak{K})/G(\mathfrak{O})$ – the affine Grassmannian of G

The affine Grassmannian

G - connected, reductive algebraic group over \mathbb{C} $\mathfrak{K} = \mathbb{C}((t)) \supset \mathfrak{O} = \mathbb{C}[[t]]$

 $Gr = G(\mathfrak{K})/G(\mathfrak{O})$ – the affine Grassmannian of *G* Structure:

$$\{\text{connected components}\} \xleftarrow{1-1} X^*(Z(\check{G}))$$

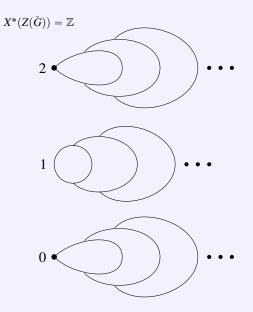
 $G(\mathfrak{O}) \circlearrowright$ Gr by left translation, and there is a bijection

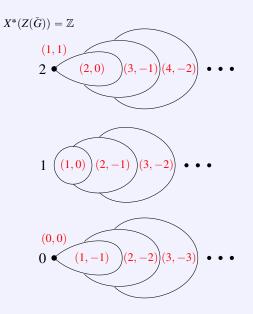
$$\{G(\mathfrak{O}) \text{ - orbits}\} \xleftarrow{1-1} (X_*(T))^+$$

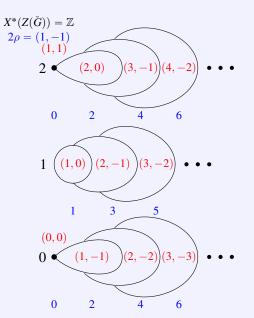
with

$$\operatorname{Gr}^{\check{\lambda}} \longleftrightarrow \check{\lambda}.$$

 $\dim \operatorname{Gr}^{\check{\lambda}} = \langle 2\rho, \check{\lambda} \rangle.$







Lusztig's embedding $\mathcal{N}_{\mathbf{GL}_n} \hookrightarrow \mathbf{Gr}_{\mathbf{GL}_n}$

"Space of lattices"

Definition

A *lattice* is an \mathfrak{O} -submodule of \mathfrak{R}^n of rank *n*.

 $L_0 = \mathfrak{O}^n$ - standard lattice

As sets,

space of lattices =
$$G(\mathfrak{K})/G(\mathfrak{O})$$
.

Lusztig's embedding $\mathcal{N}_{\mathbf{GL}_n} \hookrightarrow \mathrm{Gr}_{\mathbf{GL}_n}$

"Space of lattices"

Definition

A *lattice* is an \mathfrak{O} -submodule of \mathfrak{K}^n of rank n.

 $L_0 = \mathfrak{O}^n$ - standard lattice

As sets,

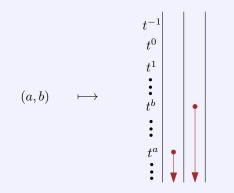
space of lattices =
$$G(\mathfrak{K})/G(\mathfrak{O})$$
.

Using explicit computations with lattices, Lusztig gave

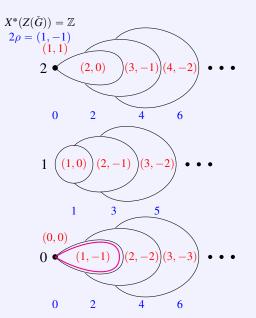
 $\mathcal{N}_{\mathbf{GL}_n} \hookrightarrow \{ \text{lattices of valuation 0 contained in } t^{-1}L_0 \}.$

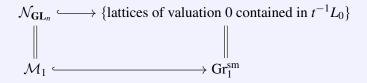
Lusztig's embedding $\mathcal{N}_{\mathbf{GL}_n} \hookrightarrow \mathrm{Gr}_{\mathbf{GL}_n}$

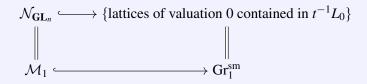
A dominant weight (a, b) gives a lattice



 $\mathcal{N}_{\mathbf{GL}_n} \longrightarrow \{ \text{lattices of valuation 0 contained in } t^{-1}L_0 \}$



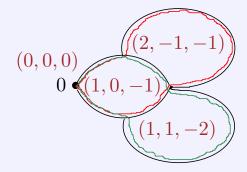




Dually,

Here, $\mathcal{M}_1 = \mathcal{M}_2$, but not true for $\mathbf{GL}_3(\mathbb{C})$.

Example for $G = \mathbf{GL}_3(\mathbb{C})$



Here, $\mathcal{M}_1 \neq \mathcal{M}_2$.

A kind of generalization of this embedding for other groups $(\pi : \mathcal{M} \to \mathcal{N})$

3 Connections to representation theory

4 A derived version

Small representations

Definition

A *small representation* of \check{G} has all of its weights in the root lattice and are such that their convex hull does not contain twice a root.

Let Gr^{sm} be the closed subvariety of Gr that is the union of the $G(\mathfrak{O})$ -orbits corresponding to small representations.

Small representations

Definition

A *small representation* of \tilde{G} has all of its weights in the root lattice and are such that their convex hull does not contain twice a root.

Let Gr^{sm} be the closed subvariety of Gr that is the union of the $G(\mathfrak{O})$ -orbits corresponding to small representations.

Example

Let
$$G = SL_2(\mathbb{C})$$
. Then $\check{G} = PGL_2(\mathbb{C})$.

Dominant weights for $G = 0, 1, 2, \ldots$

Dominant weights for $\check{G} = 0, 2, 4, \ldots$

 $Gr^{sm}=Gr^0\bigsqcup Gr^2$

A kind of generalization of Lusztig's embedding to other groups

Define $\mathfrak{O}^- := \mathbb{C}[t^{-1}] \subset \mathfrak{K}$ and $\operatorname{Gr}_0^- := G(\mathfrak{O}^-) \cdot \mathbf{0}$. Define the open subvariety

$$\mathcal{M} := \operatorname{Gr}^{\operatorname{sm}} \cap \operatorname{Gr}_0^-$$

of Gr^{sm} , and let $j : \mathcal{M} \hookrightarrow Gr^{sm}$ be the open inclusion.

A kind of generalization of Lusztig's embedding to other groups

Define $\mathfrak{O}^- := \mathbb{C}[t^{-1}] \subset \mathfrak{K}$ and $\operatorname{Gr}_0^- := G(\mathfrak{O}^-) \cdot \mathbf{0}$. Define the open subvariety

$$\mathcal{M}:=Gr^{sm}\cap Gr_0^-$$

of Gr^{sm} , and let $j : \mathcal{M} \hookrightarrow Gr^{sm}$ be the open inclusion.

Theorem (Achar–Henderson 2013)

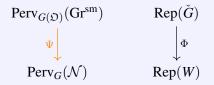
There is a finite G-equivariant map

$$\pi: \mathcal{M} \to \mathcal{N}.$$

This gives a functor

$$\Psi = \pi_* \circ j^! : \operatorname{Perv}_{G(\mathfrak{O})}(\operatorname{Gr}^{\operatorname{sm}}) \to \operatorname{Perv}_G(\mathcal{N}).$$

Progress on understanding Φ



- $\ensuremath{\textcircled{}} \ensuremath{\textcircled{}} \e$
- 2 A kind of generalization of this embedding for other groups $(\pi : \mathcal{M} \to \mathcal{N})$
- 3 Connections to representation theory

A derived version

The geometric Satake equivalence

Theorem (Lusztig 1983)

$$\dim \operatorname{IH}^{\bullet}(\overline{\operatorname{Gr}^{\check{\lambda}}}) = \dim V(\check{\lambda})$$

$$\dim \operatorname{IH}^{\bullet}(\overline{\operatorname{Gr}^{\check{\lambda}}}) = \dim V(\check{\lambda})$$

Theorem (Mirković–Vilonen 2007)

There is an equivalence of categories

$$\mathcal{S} : (\operatorname{Perv}_{G(\mathfrak{O})}(\operatorname{Gr}), *) \xrightarrow{\sim} (\operatorname{Rep}(\check{G}), \otimes)$$
$$\operatorname{IC}(\operatorname{Gr}^{\check{\lambda}}) \mapsto V(\check{\lambda}).$$

Progress on understanding Φ

$$\begin{array}{ccc} \operatorname{Perv}_{G(\mathfrak{O})}(\operatorname{Gr}^{\operatorname{sm}}) & \xrightarrow{\mathcal{S}^{\operatorname{sm}}} \operatorname{Rep}(\check{G})_{\operatorname{sm}} \\ & & & & \downarrow \\ & & & & \downarrow \\ \Psi & & & & \downarrow \\ \operatorname{Perv}_{G}(\mathcal{N}) & & & \operatorname{Rep}(W) \end{array}$$

The Springer correspondence

Nilpotent orbits in \mathfrak{sl}_n	Partitions of <i>n</i>	Irred. Reps. of \mathfrak{S}_n
Sizes of Jordan blocks	$\lambda = (\lambda_1, \dots \lambda_n)$	$V(\lambda)$

It would be nice to bypass the combinatorics and directly relate representation theory to geometry.

The Springer correspondence

Nilpotent orbits in \mathfrak{sl}_n	Partitions of <i>n</i>	Irred. Reps. of \mathfrak{S}_n
Sizes of Jordan blocks	$\lambda = (\lambda_1, \dots \lambda_n)$	$V(\lambda)$

It would be nice to bypass the combinatorics and directly relate representation theory to geometry.

Let $\mu : \widetilde{\mathcal{N}} \to \mathcal{N}$ be the Springer resolution, and define the Springer sheaf

$$\operatorname{Spr} := \mu_* \underline{\mathbb{C}}_{\widetilde{\mathcal{N}}}[\operatorname{dim} \mathcal{N}] \in \operatorname{Perv}_G(\mathcal{N}).$$

Theorem (Springer, Lusztig, Borho–MacPherson)

W acts on Spr, and there is a functor

$$\mathbb{S}: \operatorname{Perv}_G(\mathcal{N}) \to \operatorname{Rep}(W)$$

given by

 $\mathcal{F} \mapsto \operatorname{Hom}(\operatorname{Spr}, \mathcal{F}).$

The Springer correspondence

- **(**) If \mathcal{F} is simple, then $\mathbb{S}(\mathcal{F})$ is either simple or zero.
- In Thus, we have a bijection:

subset of the simples in $\operatorname{Perv}_G(\mathcal{N}) \xleftarrow{1-1} \operatorname{Irr}(W)$

The relationship between the two

Theorem (Achar–Henderson 2013, Achar–Henderson–Riche 2015)

The following diagram commutes:

where
$$\Phi = (-)^{\check{T}} \otimes \varepsilon$$
.

- $\ensuremath{\textcircled{}} \ensuremath{\textcircled{}} \e$
- 2 A kind of generalization of this embedding for other groups $(\pi : \mathcal{M} \to \mathcal{N})$
- 3 Connections to representation theory

Extension to the mixed, derived setting

Theorem (M.)

Consider the following diagram.

There is a natural isomorphism of functors

$$\mathrm{der}\Phi\circ\mathrm{der}\mathcal{S}^{\mathrm{sm}}\longleftrightarrow\mathrm{der}\mathbb{S}\circ\Psi$$

making the diagram commute.

A glimpse of the proof

It suffices to prove commutativity of the following diagram of additive categories

where $\mathcal{F} \in \text{Semis}_{G(\mathfrak{O})}(\text{Gr}^{\text{sm}})$ is of the form

 $\mathcal{F} \simeq \mathrm{IC}(\mathrm{Gr}^{i_1})[n_1] \oplus \ldots \oplus \mathrm{IC}(\mathrm{Gr}^{i_m})[n_m].$ and der $\Phi = (-\otimes \varepsilon) \circ (-)^{\check{T}} \circ (-\otimes_{\mathcal{O}_{\check{\mathfrak{g}}}*} \mathcal{O}_{\check{\mathfrak{h}}}*).$

A glimpse of the proof

It suffices to prove commutativity of the following diagram of additive categories

where $\mathcal{F} \in \text{Semis}_{G(\mathfrak{O})}(\text{Gr}^{\text{sm}})$ is of the form

 $\mathcal{F} \simeq \mathrm{IC}(\mathrm{Gr}^{i_1})[n_1] \oplus \ldots \oplus \mathrm{IC}(\mathrm{Gr}^{i_m})[n_m].$

and der $\Phi = (-\otimes \varepsilon) \circ (-)^{\check{T}} \circ (-\otimes_{\mathcal{O}_{\check{\mathfrak{g}}}*} \mathcal{O}_{\check{\mathfrak{h}}}*).$

The proof goes in two steps:

- Prove commutativity of the diagram for all groups of semisimple rank 1.
- Show that each functor in the diagram commutes with restriction to a Levi subgroup of semisimple rank 1.

The End

Thanks!

Elaborate on Step 1

Reduces to $G = \mathbf{PGL}_2(\mathbb{C}), \check{G} = \mathbf{SL}_2(\mathbb{C}).$

To produce a natural isomorphism, we must trace morphisms around the diagram.

Elaborate on Step 1

Reduces to $G = \mathbf{PGL}_2(\mathbb{C}), \check{G} = \mathbf{SL}_2(\mathbb{C}).$

To produce a natural isomorphism, we must trace morphisms around the diagram.

Degree 0 - Achar, Henderson, and Riche (2015)

Degree 2 - reduces to a single morphism

$$f := ``- \smile c_1(\mathcal{L}_{det})".$$

Elaborate on Step 1

Reduces to
$$G = \mathbf{PGL}_2(\mathbb{C}), \check{G} = \mathbf{SL}_2(\mathbb{C}).$$

To produce a natural isomorphism, we must trace morphisms around the diagram.

Degree 0 - Achar, Henderson, and Riche (2015)

Degree 2 - reduces to a single morphism

$$f := ``- \smile c_1(\mathcal{L}_{det})".$$

